
Stopping Automated Application
Attack Tools

Black Hat 2006 - Amsterdam
March, 2006

Gunter Ollmann
Director of X-Force
Internet Security Systems

Introduction

 Automated Attack Methods

 Common Protection Strategies

 Protection with Client-side Code

 Forcing a Client-side Overhead

 Thwarting Distributed and Future Attack Tools

Automated Attack Methods

“Greater is our terror of the unknown”
Titus Livius (59 BC – 17 AD)

Automated Tool Functionality

Most Common Methods:
 Copying or mirroring a complete site

 Navigating a site by scraping or Spidering

 Identifying files and scripts through CGI Scanning

 Brute Forcing of variables and submissions

 Intelligent manipulation of variables by Fuzzing

Functions: Mirroring

 Theft of intellectual property

 Repackaging of intellectual property

 Key component of criminal deception
 Man-in-the-middle attacks

 Phishing

 Identity theft

Functions: Site Scraping & Spidering

 Harvesting of email addresses for spam lists

 Social engineering attacks using personal data

 Fingerprinting server processes & software versions

 Understanding development techniques & bypasses

 Discovering “hidden” content

 Mapping of application functionality

Functions: CGI Scanning

 Discovery of administrative pages or directories

 Identifying historically vulnerable pages

 Default content or samples

 Spotting “hidden” directories or file paths

 Cross-platform shared web services

 File download repository locations

 Temporary file content or backups

Functions: Brute Forcing

Brute force guess an important piece of data making use of
the following:

 Extensive dictionaries

 Common file or directory path listings

 Information gathered through scraping & spidering

 Information gathered through CGI scanning

 Hybrid dictionaries catering for obfuscation

 Automatic character iteration

Functions: Fuzzing

 Buffer overflows

 Type conversion handling

 Cross-site scripting - XSS

 SQL injection

 File and directory path navigation

 Validation differences between client and server

Classes of Automated Tools

Can be broken down into the following:
 Web Spiders

 CGI Scanners

 Brute Forcers

 Automatic Fuzzers

 Vulnerability Scanners

Common Protection Strategies

“There is no security on this earth; there is only opportunity”
Douglas MacArthur (1880-1964)

Server Host Renaming

Changing the “Server:” response in the HTTP headers to stop
some types of fingerprinting

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Content-Location:
http://www.example.com/PageIsHere.html
Date: Fri, 01 Jan 2005 01:01:01 GMT
Content-Type: text/html
Accept-Ranges: bytes
Last-Modified: Fri, 01 Jan 2005 01:01:01 GMT
Content-Length: 1337

Blocking HEAD requests

Any HTTP HEAD request is rejected.

Instead the tool must use:

Slower to make requests – but the tool may drop the
connection once the data is received

HEAD /index.html HTTP/1.0

GET /index.html HTTP/1.0

Use of the REFERER Field

Make use of the HTTP REFERER field supplied by the client
browser in the request

GET /Next/ImGoingHere.html HTTP/1.1
Host: www.example.com
Referer: http://www.example.com/IWasHere.html
Accept-Language: en-gb
Content-Type: application/x-www-form-urlencoded

Requires a method of validating a legitimate navigation path
through the application

Content-type Manipulation

Make use of the HTTP Content-Type defined in the server
response or page contents

HTTP/1.0 200 OK
Location: http://www.example.com/ImGoingHere.html
Server: Microsoft-IIS/5.0
Content-Type: text/html
Content-Length: 145

<META HTTP-EQUIV="Content-Type" CONTENT="text/html;
charset=koi8-r">

Content-type Manipulation

Change the content page extension to anything – even image
formats

HTTP/1.0 200 OK

Location: http://www.example.com/ImGoingHere.jpg
Server: Microsoft-IIS/5.0
Content-Type: text/html
Content-Length: 145

HTTP Status Codes

Changing the status code of the response – e.g. responding
with a “200 OK” instead of “404 File Not Found” etc.

Every request generates a message effectively saying

“the page requested exists”

Client-side Redirection

Focusing on tools that make use of:
 HREF=

 200 OK responses

HTTP/1.0 200 OK
Server: Microsoft-IIS/5.0
Content-Type: text/html
Refresh: 3;URL=http://www.example.com/ThisWay.html

<META HTTP-EQUIV="Refresh"
CONTENT="3;URL=http://www.example.com/ThisWay.html">

Thresholds & Timeouts

Focusing on tools that can’t handle state:
 Use of cookie SessionID’s

 Monitoring of time between submissions and requests

 Lockout procedures

 Timeouts

 Triggered thresholds

POST /Toys/IWantToBuy.aspx HTTP/1.1
Host: www.example.com
Referer: http://www.example.com/Toys/ILikeThisOne.aspx
Accept-Language: en-gb
Content-Type: application/x-www-form-urlencoded
Content-Length: 437
Cookie: SessionID=sse9d7783790
Postcode=SW11%201SA&Var1=Yes&Var2=Yes&Account=';--<H1>

Onetime Links

Focusing on tools that multithread submissions:
 Add tracking ID’s to each URL

 Ensuring a single application navigation path

 Within page /BuyStageOne.aspx?track=1104569

 Within page /BuyStageTwo.aspx?track=1104570

http://www.example.com/Index.aspx?track=1104569
http://www.example.com/BuyStageTwo.aspx?track=1104569

http://www.example.com/Index.aspx?track=1104570
http://www.example.com/BuystageTwo.aspx?track=1104570
http://www.example.com/BuyStageThree.aspx?track=1104570

Honeypot Links

Focusing on non human-readable links:
 Invalid links within HTML content

 “hidden” links such as web-bugs

 Coloured text

<BODY BGCOLOR="white">
Valid Links

Home

Mine!

Invalid Link

<!-- HREF="../Bad.HTML"> -->
Hidden Link

hidden
</BODY>

Graphical & Audio Turing Tests

Focusing on non machine-readable puzzles:
 Difficult to read text against OCR systems

 Inclusion of sound recordings

Protection with Client-side Code

“Security puts a premium on feebleness”
H.G.Wells

Strengths of Client-side Code

 Misconception of bypassing client-side code

 Bypassing is trivial, but not if you must execute it to
do/calculate something that is validated at the server-side.

 Practically all current tools can’t fully interpret scripting
languages

Token Appending

 Simplest method

 No calculation, just string concatenation

<SCRIPT LANGUAGE="javascript">
 var token="0a37847ea23b984012"
 document.write("<A HREF='http://www.example.com/
 NextPage.aspx?JSToken="+token+"'>Link")
</SCRIPT>

Token Appending

<HTML>
 <HEAD>
 <TITLE>Example Post</TITLE>
 <SCRIPT>
 function addtoken() {
 document.myform.token.value="0a37847ea23b984012";
 document.myform.submit();
 }
 </SCRIPT>
 </HEAD>
<BODY>
 <FORM NAME="myform" ACTION="http://www.example.com/BuyIt.aspx"
METHOD="POST">
 <INPUT TYPE="TEXT" NAME="ItemName" >Item Name

 <INPUT TYPE="RADIO" NAME="Buy" VALUE="Now">Now
 <INPUT TYPE="RADIO" NAME="Buy" VALUE="Later">Later

 <INPUT TYPE="HIDDEN" NAME="token" VALUE="Fail">
 <INPUT TYPE="BUTTON" VALUE="SUBMIT" onClick="addtoken()">
 </FORM>
</BODY>
</HTML>

Token Calculator

 Improved method

 Relies upon mathematical routines

 Can include complex routines that also incorporate other
submission variables

 Harder to bypass using “smart” tools
<HEAD>
 <TITLE>Example Post</TITLE>
 <SCRIPT TYPE="text/javascript" SRC="crc32.js"></SCRIPT>
 <SCRIPT TYPE="text/javascript" SRC="cookies.js"></SCRIPT>
 <SCRIPT>
 function encodetoken() {
 var token = document.myform.token.value;
 var cookie = getCookie("SessionID");
 var page = location.pathname;
 document.myform.token.value = crc32(token + cookie + page);
 document.myform.submit();
 }
 </SCRIPT>
</HEAD>

Token Resource Metering

 Complex method

 Relies upon mathematical routines that require processing
time to calculate

 Incurs an overhead at the client-side

 Something difficult to calculate by quick to validate

Forcing a Client-side Overhead

“Do, or do not. There is no ‘try’.”
Yoda (‘The Empire Strikes Back’)

Understanding Resource Metering

Why not just use server-side wait states?
 Shift computational load to client

 Better in load-balancing infrastructure

 Break non-script-aware tools

 Force an attacker to write custom attack tools

 …why not?

Understanding Resource Metering

Borrowing from HashCash

Thwarting Distributed and
Future Attack Tools

“Never interrupt your enemy when he is making a mistake”
Napoleon Bonaparte (1769-1821)

Distributed Attack Tools

What about Distributed attack tools?
 Multiple IP sources of attack

 Variable levels of computing power

 Master/slave configuration of DDoS agents

Focus upon slowing down the attack
 Techniques that force single navigation threads

 Techniques that force a computational overhead

 Use of thresholds and invisible wait states

Protection Appliance?

Application Firewalls
 Failed technology – too complex & costly to setup

 Better value to pentest and code application securely

Anti-tool Protection as an Appliance?
 Need to have zero or minimal configuration

 Proxy browser requests and server responses

 Rewrite server responses

Protection Appliance?

Automated attack protection with an appliance?
 Server Host Renaming Yes Trivial
 Blocking of HEAD Requests Yes Trivial
 Use of REFERER Field Yes Easy
 Content-Type Manipulation Yes Easy
 HTTP Status Codes Yes Easy (with config.)
 Client-side Redirection Maybe
 Thresholds & Timeouts Yes Difficult (with config.)
 Onetime Links No
 Honeypot Links Yes Easy
 Touring Tests No
 Token Appending No
 Resource Metering Yes Medium (with config.)

Next Generation Automated Tools

The next generation of tools will need to:
 Fully understand and parse client-side code

 Be highly customisable to each application

 Have some form of “intelligence” to make sense of server
responses

Limitations of the Techniques

There are limits to each and every technique.
Consider the impact of:

 Slow computers

 Slow connections

 Shared connections and DHCP

 Alienation due to script language requirements

 Processing power

 Mobile computing devices

Future Research Areas

Probable areas of future study:
 Tools that utilise second-order attacks and how they detect

success

 Sandboxing of client-side code and execution to obtain
HREF information

 Advances in automated responses to distributed attacks at
the custom application level.

Thank You
Questions?

